Spin soliton to revolutionize cell phone communication
By ANIThursday, September 16, 2010
WASHINGTON - Scientists have found theoretical evidence of a new way to generate the high-frequency waves used in modern communication devices such as cell phones
The analysis by researchers at the National Institute of Standards and Technology (NIST), if supported by experimental evidence, could contribute to a new generation of wireless technology that would be more secure and resistant to interference than conventional devices.
The team’s findings point toward an oscillator that would harness the spin of electrons to generate microwaves-electromagnetic waves in the frequencies used by mobile devices.
Electron spin is a fundamental property, in addition to basic electrical charge, that can be used in electronic circuits.
The discovery adds another potential effect to the list of spin’s capabilities.
The team’s work-a novel variation on several types of previously proposed experimental oscillators-predicts that a special type of stationary wave called a “soliton” can be created in a layer of a multilayered magnetic sandwich. Solitons are shape-preserving waves that have been seen in a variety of media.
Creating the soliton requires that one of the sandwich layers be magnetized perpendicular to the plane of the sandwiched layers; then an electric current is forced through a small channel in the sandwich.
Once the soliton is established, the magnetic orientation oscillates at more than a billion times a second.
“That’s the frequency of microwaves. You might use this effect to create an oscillator in cell phones that would use less energy than those in use today. And the military could use them in secure communications as well. In theory, you could change the frequency of these devices quite rapidly, making the signals very hard for enemies to intercept or jam,” said NIST physicist Thomas Silva.
Silva added that the oscillator is predicted to be very stable-its frequency remaining constant even with variations in current-a distinct practical advantage, as it would reduce unwanted noise in the system.
It also appears to create an output signal that would be both steady and strong. (ANI)