Earth’s mantle and core mix 2900 km below our feet
By ANISaturday, September 18, 2010
WASHINGTON - Using X-ray diffraction at the European Synchrotron Radiation Facility in Grenoble (France), researchers have found that the Earth’s mantle and its core mix at a distance of 2900 km under our feet in a mysterious zone.
A team of geophysicists has just verified that the partial fusion of the mantle is possible in this area when the temperature reaches 4200 Kelvin.
This reinforces the hypothesis of the presence of a deep magma ocean.
Scientists of the Institut de mineralogie et de physique des milieux condenses (UPMC/Universite Paris Diderot/Institut de Physique du Globe/CNRS/IRD), carried out the above study.
The results will have an effect in the understanding of the dynamics, composition and the formation of the depths of our planet.
On top of the core of the Earth, constituted of liquid iron, lies the solid mantle, which is made up essentially of magnesium oxides, iron and silicon.
The border between the core and the mantle, located at 2900 km under our feet, is highly intriguing to geophysicists.
With a pressure of around 1.4 million times the atmospheric pressure and a temperature of more than 4000 Kelvin, this zone is the home to chemical reactions and changes in states of matter still unknown.
The seismologists who have studied this subject have acknowledged an abrupt reduction of the speed of the seismic waves, which sometimes reach 30pc when getting close to this border.
This fact has led scientists to formulate the hypothesis, for the last 15 years, of the partial melting of the Earth mantle at the level of this mantle-core border.
And the new study has confirmed it.
In order to access the depths of the Earth, scientists have not only seismological images but also a precious experimental technique: diamond anvil cells, coupled with a heating layer.
This instrument allows to recreate the same pressure and temperature condition than those in the interior of the Earth, on samples of a few microns.
The researchers used the above technique on natural samples that are representatives of the Earth mantle and that have been put under pressures of more than 140 gigapascals (or 1.4 million times the atmospheric pressure), and temperatures of more than 5000 Kelvin.
A new approach to this study has been the use of the X-ray diffraction technique at the European synchrotron ESRF.
This has allowed the scientists to determine what mineral phases melt first, and they have also established, without extrapolation, fusion curves of the deep Earth mantle, i.e. the characterization of the passage from a solid state to a partially liquid state.
Their observations show that the partial fusion of the mantle is possible when the temperature approaches 4200 Kelvin.
These experiments also prove that the liquid produced during this partial fusion is dense and that it can hold multiple chemical elements, among which are important markers of the dynamics of the Earth mantle.
These studies will allow geophysicists and geochemists to achieve a deeper knowledge of the mechanisms of differentiation of the Earth and the history of its formation, which started around 4.5 illion years ago. (ANI)