Short-term weather extremes, not warming, driving Greenland ice sheet flow: Study
By ANIThursday, December 9, 2010
LONDON - A University of British Columbia study has revealed that sudden changes in the volume of melt water contribute more to the acceleration - and eventual loss - of the Greenland ice sheet than the gradual increase of temperature.
The ice sheet consists of layers of compressed snow and covers roughly 80 per cent of the surface of Greenland. Since the 1990s, it has been documented to be losing approximately 100 billion tonnes of ice per year - a process that most scientists agree is accelerating, but has been poorly understood. Some of the loss has been attributed to accelerated glacier flow towards ocean outlets.
Now a new study has shown that a steady melt water supply from gradual warming may in fact slow down glacier flow, while sudden water input could cause glaciers to speed up and spread, resulting in increased melt.
“The conventional view has been that meltwater permeates the ice from the surface and pools under the base of the ice sheet,” Nature quoted Christian Schoof, an assistant professor at UBC’s Department of Earth and Ocean Sciences and the study’s author, as saying.
“This water then serves as a lubricant between the glacier and the earth underneath it, allowing the glacier to shift to lower, warmer altitudes where more melt would occur.”
Noting observations that during heavy rainfall, higher water pressure is required to force drainage along the base of the ice, Schoof created computer models that account for the complex fluid dynamics occurring at the interface of glacier and bedrock. He found that a steady supply of meltwater is well accommodated and drained through water channels that form under the glacier.
“Sudden water input caused by short term extremes - such as massive rain storms or the draining of a surface lake - however, cannot easily be accommodated by existing channels. This allows it to pool and lubricate the bottom of the glaciers and accelerate ice loss,” said Schoof, who holds a Canada Research Chair in Global Process Modeling.
“This certainly doesn’t mitigate the issue of global warming, but it does mean that we need to expand our understanding of what’s behind the massive ice loss we’re worried about,” said Schoof.
A steady increase of temperature and short-term extreme weather conditions have both been attributed to global climate change. According to the European Environment Agency, ice loss from the Greenland ice sheet has contributed to global sea-level rise at 0.14 to 0.28 millimetres per year between 1993 and 2003.
The study has been published in the journal Nature. (ANI)